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Abstract 
 

This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. The study is based on fake news detection with machine learning 

concepts. Literature review on fake news was conducted in order to review the most 

significant theory concepts and realize the level of advancement regarding this topic by 

examining related work. A total number of 940 data points were extracted through a 

daily web scrapping procedure. The research part provides an experimental analysis 

with 5 well known classifiers and results are evaluated by appropriate metrics. Finally, 

the last part of the study is referring to the innovation of this study, the Ranking Model 

approach, which is capable of labeling new inputs as fake or real. 
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1 Introduction 
 

Fake news detection refers to the prediction of alterations of a news article, which is 

intentionally deceptive. Four decades of deception detection research has helped us 

learn about how well humans are able to detect lies in text. The findings show that we 

are not so good at it; in fact, we are only 4% better than chance, based on a meta-

analysis of more than 200 experiments. Fake news is considered to be a global problem 

because it rises widely and constantly. Misinformation and disinformation coexist and 

as a result the public consciousness and opinion of everyone is affected. As a result, the 

individual is vulnerable, and his free will may be affected. A new system of safeguards 

is needed, and this study will contribute regarding the accomplishment of that scope. 

This dissertation is divided in nine chapters. 
 

The first chapter includes the introduction. In the second chapter, all the relevant 

background information and the literature review is presented, regarding fake news and 

machine learning concepts. More specifically, there is information about the theory of 

fake news with respect to appropriate papers. Additionally, the classification algorithms 

used are explained alongside the necessary evaluation metrics: accuracy, precision, 

recall, f1-score, confusion matrix and mandatory time to build the model, in order to 

obtain insights into algorithmic performance. 
 

The third chapter contains the problem statement of the study and the proposed 

research solution and methodology. Also, the three research questions are stated. The 

first question is about the discovery of the most suitable model among Bag of Words 

and Tf-Idf model. The second question is referring to uncovering the best possible 

algorithm used. In detail, those algorithms are: Multinomial Naive Bayes, Passive-

Aggressive, Logistic Regression, Adaboost and MLP. The final question of this study 

is related with the introduction of the Ranking model, which can classify new input 

text-data given by the user. This approach constitutes the innovation of the thesis. 
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The fourth chapter consists of the data extraction and the preparation for the 

analysis parts. The methodology for data collection was web scrapping, because public 

data were not suitable in our case. After the completion of that procedure, data were 

pre-processed according to various  techniques. The final part of that section includes 

the introduction of Bag of words and Tf-Idf model, and their functionality is discussed. 
 

On the fifth chapter, all the experimental results of the classifiers according to the 

python code are presented and discussed. These experiments test the power of each 

algorithm with the addition of useful parameters and tuning process. Also, figures 

with the evaluation metrics are included. 
 

On the sixth chapter, the results with respect to the mentioned evaluation metrics 

for every algorithm are discussed and the top classifiers are revealed. The seventh 

chapter includes the introduction of the Ranking model approach. The relevant 

arguments and its functionality are discussed in order to operate algorithmically. 

Finally, its strong and weak points are mentioned. 
 

In the eighth chapter, the results of the entire thesis are mentioned and discussed. 

All the significant points are stated as well as the possible challenges and limitations 

which were observed during the completion of the study. Moreover, the future work 

part is presented with all the incoming plans about the continuation of the research 

study. 
 

The last chapter contains all the source code used for this research and it is split 

into two parts. The first part includes the python script, which was used in order to 

extract data from the websites (web scrapping code) and the second part consists of 

the main code, responsible for all the experiments and applied techniques. 
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2 Background and literature 
review 

 

This section is a literature review on fake news. Relative papers were investigated in 

order to construct this part. Additionally, machine learning concepts are mentioned and 

an introduction for each selected classifier is enlisted. 

 

2.1 Fake news Theory 
 

Regarding fake news theory, there are a lot of definitions by different academic 

papers. Additionally, a notable amount of reports reveals the impact of misinformation 

and the spreading of fake news in our daily life and society in advance. 

 

2.1.1 Definitions of Fake News 
 

It is a fact that the influence of fake news concerning the individual and the society is 

not a modern phenomenon. Their existence begins right after the development of the 

printing press in 1439. Regarding the definition of fake news, it is true that there are 

multiple interpretations and explanations. A widely adopted definition of fake news is 

about “News that are intentionally and verifiably false and could mislead readers” (Kai 

Shu, 2017) [1]. Provided the above definition, two significant findings can be observed. 

Firstly, there is the aspect of news which indeed contains false information and secondly 

the news that is formulated in order to mislead consumers. According to academic 

papers, fake news can be divided into several categories, such as satire and parody. 

However, some papers accept those types as categories of fake news categories, while 

other papers do not share this idea. For example, several papers treat satire as a type of 

fake news due to the false oriented content, while on the other hand satire for some is 

considered a form of entertainment. Despite that, there is a point which is similar among 

all determinations. Speaking of that, it is common that fake news adopts the format, 

look, pattern, writing style of articles and real news content in order to achieve a 

desirable level of credibility. Thus, in simple words it is true that fake news tries to 

replicate the appearance of trustworthy news. (Edson C. Tandoc Jr., 2018) [2] 
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2.1.2 Growing Importance 
 

Since the existence of the fake news phenomenon, its pace of growth is undoubtedly 

notable. To start with, according to media industry the limitations and barriers have 

been sharply decreased due to two occasions. Specifically, nowadays websites are easily 

developed and accessible by every user because it is almost effortless to rise the 

financial earnings through advertising articles on web environment. Fake news can be 

accessed, shared and quickly spread with ease in social media platforms like Facebook 

and Twitter. On top of that, it is a fact that the corresponding total number of users of 

the mentioned platforms has been discernibly increased through the years alongside 

with the users` growth rate which can be translated to augmentation of fake news 

circumstances (Gentzkow, 2017) [3]. 

 

2.2 Typology of Fake News 
 

Above, it was stated that fake news can be identified in different types. In this 

section, six possible formations of fake news are analyzed and explained: satire, parody, 

fabrication, image manipulation, advertising, and propaganda. Additionally, the 

mentioned categories have been conducted according to academic articles that contain 

the search term “fake news”. 

 

2.2.1 Satire 
 

Satire is the style of writing that exposes real-world individuals or organizations in a 

humorous style usually by the treatment of irony (Condren, 2008) [4]. It is a fact that 

satire constitutes the most widely used format of fake news. There are a lot of programs 

mainly in television such as the Daily Show in the United States which mimic the viral 

news by the addition of humor or exaggeration. Those specific individuals refer to 

themselves as entertainers rather than typical newscasters. Several studies agree on the 

fact that satirical programs belong to the media ecosystem, while it is true that they have 
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greater impact and response on the younger audience due to the humorous approach of 

delivering the news. Besides that, the essential adoption of the humorous style is mostly 

used in order to grant criticism concerning political and economic oriented news. Other 

than that, studies have shown that the audience is knowledgeable in the same way as 

individuals who are informed by other forms of news media. Simultaneously, satirical 

programs undoubtedly affect the opinions and political trust of their corresponding 

audience. Lastly, some studies consider the political news satire as a type of fake news 

due to its format. More specifically, they use the form of newscasts with the addition of 

humor and ridicule while the content is real and truly based affair (Edson C. Tandoc Jr., 

2018) [2]. 

 

2.2.2 Parody 
 

A second major format of fake news is parody. There are a lot of similarities between 

parody and satire. More specifically, in both cases humor is the key factor regarding 

captivating the audience. On the other hand, there are also dissimilarities between those 

formats. Speaking of that, parody focuses on the ludicrousness of an affair and 

highlights them by producing untrue news stories instead of stating comments in a 

humorous oriented style. There are a lot of parody websites which are mistakenly 

considered as actual news websites. The reader may intentionally or not label the news 

as real and as a result, parody is accepted as a fake news format. Finally, it is significant 

to be mentioned that parody alongside with satire criticize the media in a way. As a 

result, journalists are careful and mindful about the content and the credibility of the 

news (Edson C. Tandoc Jr., 2018) [2]. 

 

2.2.3 Fabrication 

 

The third type of fake news is fabrication, which differs fundamentally from satire 

and parody. In detail, the author or producer of an item is often intentionally trying to 

misinform the interested individuals and there is no clarification about its falseness. 

Fabricated items are usually published on social media platforms or on websites. More 

specifically, the deception of the individuals is greatly boosted when organizations are 

involved regarding the corresponding item`s publication. Similarly to parody news, 

fabrication items depend on actual affairs but often with political bias. Not surprisingly,  
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the items gain legitimacy through social media platforms due to the phenomenon of 

engaging trusted people. Furthermore, the fabricated items achieve legitimacy through 

the creation of websites which mimic organizations with credibility. Once the reader 

accepts and trusts the quality of the source then no further investigation on item`s 

validation will be done by their side. Finally, it is important to be mentioned that there 

are two dimensions regarding news fabrication. The first dimension refers to the 

financial motivation of the author. To explain more thoroughly, the increasing number 

of clicks regarding news results on attracting advertisers. Hence, financial incentives 

may occur. The second aspect of news fabrication relates to the development of bots 

that spam the news. As a result, the corresponding news item acquires widespread 

acceptance. In addition, the content and the format of the fabricated news is similar or 

even identical to the real (Edson C. Tandoc Jr., 2018) [2]. 

 

2.2.4 Image Manipulation 
 
 

Image Manipulation is another type of fake news, but the effect is visual and not 

text-oriented. This category refers to the manipulation of an image either on smaller or 

greater scale. More specifically, a simple violation of the photo could be the color 

alteration or removing minor parts. On the other hand, more significant adjustments 

could be the deletion or insertion of an individual into an image. It is known that media 

take advantage of these techniques in order to attract the audience with visual content. 

According to the Reuters code of ethics, light effect changes like balancing the color or 

image`s tone can be accepted as a presentational tool. In contrast, manipulations such as 

additions and deletions of elements on an image are not allowed because this kind of 

actions may misinform people. As a result, the level of manipulation of news media`s 

perspective is controlled. Currently, the same code does not apply on social media. 

Thus, manipulated images can be shared and confuse people or even worse mislead 

them (Edson C. Tandoc Jr., 2018) [2]. 

 

2.2.5 Advertising and “Clickbait” 
 

Advertising and “Clickbait” is another category of fake news. In this case, the factor 

that distinguishes this type from the others is the financial gain. False information is 

formed in order to characterize or promote advertising materials and it is usually  
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described by presenting the positive features of the product or individual being 

advertised. This type of information is considered as fake and can be produced by third 

parties with a genuine approach. On top of that, sometimes those advertising agencies 

incorporate with television news in order to be delivered to the audience by authentic 

news reports. 
 

“Clickbait” is a modern phenomenon which spreads more and more around the 

internet, often aiming at financial gains. It is the process of attracting a user to click on a 

post which is connected to an irrelevant website page. As a result, the user is moved to 

another environment which usually constitutes a commercial site or in general unrelated 

web source. Consequently, it is considered as a type of fake news because it misleads 

people.  

For example, a post on Facebook became viral during 2017 which was “Clickbait”. 

In detail, the post showed a Middle Eastern man speeding in the United Kingdom and 

getting arrested by the police. Additionally, the headline of the post revealed that the 

man responded to police that his car was costlier than the annual police-officer`s 

income. The item lured a lot of people into clicking it while it gained countless negative 

and hateful comments. However, the post was not connected with any real news affair, 

but the users were misinformed and moved to a marketing website (Edson C. Tandoc 

Jr., 2018) [2]. 

 

2.2.6 Propaganda 
 

The final type of fake news is Propaganda, which relates to the political scene. The 

scope of Propaganda is to influence public consciousness and affect the free will of 

people to the advantage of a government party or public figure or organization (Edson 

C. Tandoc Jr., 2018) [2]. There are many examples of propaganda being utilized and 

exploited as an effective tool in order to manipulate and control public consciousness 

and opinion, such as in Communist parties and Central and Eastern Europe. The 

outcome was undoubtedly decisive and forceful. In detail, the respective government`s 

interests and ideas contributed at militarizing and leading societies into a war (Gatov, 

2018) [5].  

Propaganda and advertising share similarities, but there is a borderline. Speaking of 

that, a study is important to be mentioned which investigated people who were 

commenting on social platforms involving a financial exchange by companies. 

According to that process, companies demanded positive criticism by the paid people 

and negative criticism for their competitors. The postings were not exclusively  
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advertising but the motivation behind that is the financial growth regarding the 

mentioned companies. Propaganda is based on true events, but biased and often 

grounded on convincing rather than misinforming (Edson C. Tandoc Jr., 2018) [2]. 

 

2.3 Classifiers and Evaluation metrics 
 

In this section, the used classifiers and evaluation metrics are presented and 

discussed. More specifically, those classifiers are Multinomial, Passive Aggressive, 

Ada-Boost, Logistic Regression and MLP while the evaluation metrics are accuracy, 

precision, recall, F-score and confusion matrix. 

 

2.3.1 Multinomial Naïve Bayes 
 

Multinomial classifier belongs to the Naïve Bayes family. According to this 

category, the classification is based on Bayes` rule or Bayes` formula: 
 
 
 
 
 
 
 
 
 
 

Figure 1: Bayes rule formula 
 
where  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Bayes rule 
 
C is a variable which includes all the possible events. In this study, the variable C 
 
contains all the documents of the dataset, is a vector random 
 

variable of the feature values x = (x1,..,xj,…,xd). Each document has one vector. P(C is the conditional 

probability that a document belongs to class ck. given the 

 -8- 

 = ck|X= x) 

 
(c1,..,ck`,…,cec). X 



feature vector x. Hence, conditional probabilities are computed of particular vectors of 

feature values for documents of each class and the unconditional probability of a 

document of each class in order to determine P(C = ck|X= x). As a result, the Bayes` 

rule can be rewritten as: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
 

As it was mentioned before P(ck |x) is the asked calculation. In order to achieve that, 

we need to compute P(x |ck) and P(x). Unfortunately, the calculation of P(x |ck) is 

complicated, so Bayes suggests the following decomposition of distribution of x 

conditional on ck as a technique to fight the mentioned problem: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 
 

where  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5 

 

A classifier which utilizes these equations in order to achieve his goal is known as 

Naïve Bayes Classifier. 
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Multinomial classifier is a different approach with regards to the following 

assumption: 
 

Naïve Bayes: single draw on a vector-valued variable X of length d. 
 

Multinomial: f draws on a d-valued multinomial variable X. 
 

Finally, the advantage of Multinomial classifier in our study is that the document length 

is resolved very naturally in the model. On the other hand, the disadvantage of this 

classifier according to the study is that it assumes independence between multiple 

incidents of the same word (Lewis) [6]. 

 

2.3.2 Passive-Aggressive 
 

This classifier belongs to a large-scale learning and there are similarities with 

Percepton since they do not need a learning rate. A binary classification consists of 

sequence rounds. On each round, the algorithm investigates an instance and predicts the 

label to be either +1 or -1. After the completion of the prediction, the error is calculated, 

and the algorithm adjusts it in order to learn about the weight vector and improve its 

performance. The weight vector is sign(w • x), where x is the instance. Every time the 

margin is a positive number then sign(wt • xt) = yt (where y is the label) and the 

algorithm has produced an accurate prediction The name of the classifier is related to 

the corresponding update strategy. More specifically, the constrained optimization 

problem for round t and new weight vector Wt+1 is presented: 
 
 
 
 
 
 
 
 

 

Figure 6: weights for PA algorithm 
 

 Algorithm is Passive: Hinger-loss is zero, that is, wt+1 = w whenever ℓt = 0.


 Algorithm is Aggressive: Loss is positive and wt+1 is forced to satisfy the 

constraint ℓ(wt+1;(xt , yt)) = 0 regardless of the step-size required.
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According to those two behaviours, the algorithm is called Passive-Aggressive. It is 

significant to be mentioned that due to the aggressive update strategy, the weight 

vector may be modified dramatically in order to satisfy the constraint. 

Consequently, this outcome may lead the weight vector into the false direction 

(Koby Crammer, 2006) [7]. 

 

2.3.3 AdaBoost 
 

AdaBoost classifier is related to the boosting concept. Boosting is an ensemble 

technique. In detail, it is the combination of weak classifiers in order to create a strong 

classifier with a good performance. A model is constructed by the training data and then 

a second model is created which corrects the inaccuracies of the first one. This 

procedure continues until it reaches the maximum number of models. The AdaBoost 

classifier is characterized by level one decision trees as weak learners. Level one 

decision trees are very simple because only one decision is involved for the 

classification. The weights are updated according to the following function: 

Weight(xi) = 1/n 
 

Where x is the training instance and n is the number of training instances. The decision 

about the prediction is taken with respect to the weighted average of the weak learners. 

Each weak classifier calculates the predicted values with +1.0 (if class A is the outcome 

decision) and -1.0 (if class B is the outcome decision). The predicted values are 

weighted accordingly to their respective stage values. Finally, AdaBoost algorithm is 

taking into account all the decisions by calculating the sum of the total weak learners` 

outputs and classifies: 
 

Class A : In case the sum is positive value. 
 

Class B : In case the sum is negative value. 
 

Finally, it is significant to be stated that AdaBoost is used for binary problems like the 

one in our study. (Brownlee, 2016) [8] 

 

2.3.4 Logistic Regression 
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Logistic regression is the appropriate regression analysis for binary classification 

problems. The logistic regression is used to describe the data and the relationship 

between one dependent binary variable and one or more independent variables. The 

goal of logistic regression is to find the best fitting model to describe the relationship 

between the dependent variable and a set of independent variables.  

The specific algorithm creates the coefficients (and its standard errors and 

significance levels) of a formula. The reason is the capability to predict a logit 

transformation of the presence probability of the interested characteristic. Rather than 

choosing parameters that minimize the sum of squared errors, estimation in logistic 

regression chooses parameters that maximize the likelihood of observing the sample 

values. It can be used in various fields, including machine learning. The assumptions of 

the algorithm are the following: 
 

 The dependent variable has to be binary.


 No appearance of extreme values in the data.


 No high correlations in between the predictors.
 

The function of logistic regression classifier (logit) is presented:  
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Logit function 

 

The function is the natural log of the odds that the dependent variable is equivalent to 

one of the categories. Finally, it should be stated that logistic Regression is very popular 

because the logit function is simple regarding the interpretation of the results (Statistics 

Solutions) [9]. 

 

2.3.5 MLP 
 

Artificial neural networks (ANNs) are computing systems with their concept being 

motivated by biological brains in order to solve difficult problems. The first neural 

network was a Percepton model which is a single neuron model. Their capability is 

related to their efficient representation of the training data regarding the interested 

output`s description. Neural networks can learn any mapping function.  
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The predictive effectiveness of neural networks is related with the hierarchical structure 

of the networks. The data structure can select features at different scales and combine 

them into higher-order features. Neural networks are composed of neurons which have 

weighted input signals and produce an output signal according to an activation function. 

Additionally, the mentioned neurons are organised into networks of neurons. More 

specifically, a raw of neurons is named as layer, and a network may have numerous 

layers.  

A simple network is composed of three layers: input, hidden and output layers. The 

input layers are not the neurons which were described previously. They just pass the 

input data to the next layer and it is the visible part of the network. The hidden 

layer/layers are not exposed to the input. Their network could be simple or deep with a 

lot of required calculations. Their target is to output the value, but the train procedure 

differs according to the complexity of the network. Finally, the last hidden layer is 

called as output layer and it is responsible for the output value. An example of a neural 

network schema is presented below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: MLP schema 
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Neural networks can be applied in various problems and gain desirable popularity 

among other machine learning methods (Brownlee, Crash Course on Multi-Layer 

Perceptron Neural Networks, 2016) [10]. 

 

2.3.6 Evaluation Metrics 
 

A very common, evaluation criteria is the Confusion Matrix. The confusion Matrix 

depicts includes the True Positive, True Negative, False Positive and False Negative 

ratio of the algorithm’s results. The below figure 9 shows an example of a Confusion 

Matrix: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: Confusion matrix, an example 

 

The true positives and the true negatives are observations that are correctly predicted, 

and they are highlighted with green color. The false positives and false negatives are 

miscalculation of the algorithm and they are highlighted with red color. A good 

performance for a classifier is achieved through the minimization of those mentioned 

values, false negative and false positive. 
 

Since those values are defined, it is essential to define the next evaluation criteria 

that arise from the confusion matrix. In detail, those metrics are accuracy, precision, 

recall and f1-score. Accuracy is the most intuitive performance measure and it is simply 

a ratio of correctly predicted observation to the total observations. Accuracy is a great 

measure but only when you have symmetric datasets where values of false positive and 

false negatives are almost same. In our study, the dataset is almost symmetric and as a 

result the usage of this metric is meaningful. Precision is the ratio of correctly predicted 
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positive observations to the total predicted positive observations. Furthermore, recall is 

the ratio of correctly predicted positive observations to the all observations in actual 

class - yes. Lastly, f1-score is the weighted average of Precision and Recall. It appears 

that, this score takes into consideration both false positives and false negatives. 
 

Below, the figure 10 presents their mathematical formulas:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10: mathematical formulas of precision, recall, f1-score and accuracy 

 

All those metrics will contribute in order to discover the best possible classification 

algorithm. Finally, the required time to build a model constitutes an essential factor and 

as a result it will be considered for the evaluation of each classifier (Joshi, 2016) [11]. 

 

2.3.7 Generalization 
 

Generalization is a crucial machine learning concept for the performance of every 

model. This terminology is related with the reaction of the machine learning model on 

unseen data. More specifically, the aim of each model is to generalize well from the 

training data to any other similar problem. This outcome will ensure a trustworthy 

model which will be efficient on all case scenarios. Unfortunately, if a learning model 

does not generalize effectively then two occurrences are responsible for that, known as 

over-fitting and underfitting. In detail, overfitting and underfitting are the catalysts for 

machine learning classifiers with poor performance. 

 
 
 
 

-15- 



An overfitted model is a statistical model that is consisted of more parameters than 

can be justified by the data. As a result, the model fails to predict as accurate as before 

with the addition of new data. An example of an over-fitted is following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: example of overfitted model 

 

As it can observed by the figure, the detail and noise in the training data negatively 

affect the model`s prediction in fresh data. Random fluctuations in the training data are 

adopted as concepts and finally learned by the model. When new data are added these 

concepts do not apply considering the behavior of the recent data might not be the same. 

Resultantly, the performance of the classifier turns out to be poor. Overfitting is more 

possible to be caused on nonparametric models which are characterized by flexibility 

during target function`s learning procedure. According to that, a considerable amount of 

nonparametric machine learning algorithms includes parameters or techniques to limit 

and constrain with respect to the level of detail that the model learns without harmful 

determinations. 
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Figure 12: Example of underfitted model 

 

Underfitting is a phenomenon which is related with the inability of modeling the 

training data or performing well on unseen data. The model is unable understand the 

relationship among the input values and the target values. As a result, poor performance 

is the only possible outcome. An example of underfitted model is presented on the 

figure 12 (Brownlee, Overfitting and Underfitting With Machine Learning Algorithms, 

2016) [12]. 

 

2.4 Related Work 
 

In the following chapter, recent studies on Fake news detection are presented in 

order to gain knowledge about techniques and methods which are used in this scientific 

field. Besides that, the level of activity according to this topic can be observed. 

 

2.4.1 Linguistic and Network-based approaches 
 

This paper utilizes state-of-the-art technologies in order to detect fake news. More 

specifically, the survey focuses on two approaches. Firstly, the linguistic approaches in 

which the patterns of the language connected with deception are investigated and 

analyzed in order to be fully-recognized. For example, most people who lie utilize the 

language with a specific plan, so they can convince the others.  
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During this execution, a lot of key features may be observed that reveal them as liars 

because they are hard to control such as specific verbal frequencies and patterns of 

pronoun. Technically speaking, the data are represented according to the “bag of 

words” model, which treats each word with identical significance. As a result, the most 

frequent words are analyzed, so the deceptive patterns can be uncovered. 

Simultaneously, tagging of words into corresponding lexical cues for instance, parts of 

speech is another option of producing frequency sets and therefore explore the 

linguistic cues regarding to deception. The disadvantage of this representation 

technique is the isolation of the words and non-exploitation of the united context 

information. 
 

Also, deeper language structures are involved because word analysis is not 

sufficient. As a result, Probability Context Free Grammars (PCFG) boosts the accuracy 

of prediction by enforcing the deep syntax analysis. In detail, a sentence is transformed 

to a set of its parts of speech which can describe the syntax structure. After that, 

probabilities are assigned to the corresponding set in order to predict for example if a 

verb or noun is coming next. 
 

Another improvement of the accuracy score is the semantic analysis addition. 

Generally, this method is used for describing the content meaning of words with 

probabilities applied to a large text. This technique can be applied for discovering 

deception cues with effective results. More specifically, signals of truthfulness are 

extracted and analysed by a profile which is consisted of personal reviews and 

opinions. Furthermore, multiple profiles are compared which are derived from a large 

database with relative data. Hence, the outcome of this process is that a profile with a 

deceptive writer may stand out or differ from the rest profiles. 
 

Finally, it is worth mentioning that according to Rhetorical Structure Theory (RST) 

analytic framework the differences of deceptive and truthful messages can be 

captured. Afterwards, a Vector Space Model (VSM) can be incorporated which is able 

to determine the position for each message in a multi-dimensional RST environment 

with regards to the distance of truth and deceptive points. 
 

Speaking about the analysis part, two widely known classifiers were used: Support 

Vector Machine (SVM) and Naïve Bayes. The choice of the mentioned two models is 

relates to the fact that they can predict instances with numeric clustering and distances 

at its core. Meaningful distance functions and correlation indexes are the most valuable 

factors that influence and finalize the accuracy of the classification process. The under 
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lying hypothesis is based on the unintentional usage of emotions by the liar`s side and 

SVM classifiers achieved 86% accuracy which proves that deceivers over-produce 

negative emotionally words with regards to truthful reviewers. 
 

The linguistic approach is very promising, but the generalization rule is not at a 

similar desirable level due to the veracity of real-time news. Secondly, the network 

approaches in which: “ network information, such as message metadata or structured 

knowledge network queries can be harnessed to provide aggregate deception 

measures”. As a result, a hybrid model derives incorporated with machine learning 

techniques. (Niall J. Conroy) [13] 

 

2.4.2 Bag-of-words and TF-IDF approach 
 

In this approach the text representation of text input is completed through bag-of-

words (BOW) and term frequency (TF) and term frequency-inverse document 

frequency (TF-IDF) techniques. Both models are ideal for language-oriented problems 

and document classification. 
 

In detail, bag-of-words model can extract features from the text and afterwards use 

various machine learning classifiers. The approach takes into account the occurrence of 

a word within the document while the structure and the order of the words are 

unimportant factors. Subsequently, the lack of studying the word relationships in the 

context constitutes a limitation. Due to that fact, it is called as “bag” of words model. 

The complexity of this method derives on the way of designing the vocabulary of 

known words alongside with the relevant score of its word occurrence and frequency. 
 

The second used model is TF-IDF model. Each word in the collection of documents 

is assigned with a weighted score which is based on the importance of a word according 

to how many times it was found in the document. 
 

The UCLMR team calculated TF vector of the headline and body text of a document 

and afterwards they determined the cosine similarity TF-IDF vectors between those 

two features. Besides that, tokenisation technique was applied and stop words were 

removed with regards to pre-processing stage. As a result, a vocabulary was conducted 

with the 5.000 most frequent words in the training set, while at the same time TF 

vectors and TF-IDF cosine similarity were connected in a feature vector of total size 

10.001. Finally,  the combined vector was used into specific classifier algorithms. The 

schematic diagram of UCLMR`s system is unfolded on Figure 13. 
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Figure 13: Schematic diagram of UCLMR`s system 

 

The output label includes four possible decisions for every new input data: “agree”, 

“disagree”, “discuss”, “unrelated”. The chosen classifier for the training procedure was 

MLP and its performance was tested on 50 random splits of the data. In advance, the 
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algorithm was evaluated by a confusion matrix. More specifically, the achieved 

results are presented below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14: evaluation results of UCLMR`s system 

 

As it can be observed the “agree” label predictions of the classifier achieve an 

outstanding performance but simultaneously the “disagree” label predictions are poor 

according to this evaluation method. (Benjamin Riedel, 2018) [14]. 
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3 Problem statement, 
proposed solution/ 
methodology 

 

 

3.1 Topic and Research problem 
 

Fake news mimic news media content with formations which were described in the 

literature review part. This phenomenon has drawn interest and attention in political text 

and various other topics such as stock values, vaccination, nutrition etc. Moreover, there 

are websites whιch publish fake news as satire or humor related to current affairs or new 

events, while some other websites aim for the profit which is gained by clicks. Internet 

is becoming an inseparable source of knowledge and entertainment.  

Consequently, the internet is an integral part of everyday for every individual. Fake 

news is concerned to be a global problem because it rises widely and constantly. 

Undeniably, fake news enlarges other information disorders, such as misinformation 

(misleading information) and disinformation (false information which is intentionally 

directed). As a result, the individual is vulnerable and his free will may be affected 

(British Council) (David M. J. Lazer, 2018) [15, 16]. New methods need to be 

developed in order to fight this incident.  

This study will contribute in addressing this problem and therefore, reinforce the 

capabilities of every individual. Finally, the major motivation for this topic is the 

following: 
 

 Web articles and social media are a powerful source of information, but it is a 

fact that fake news coexist alongside. There are some patterns that can be 

discovered and utilized in order to combat fake news which are not observable 

by human. Quantitative methods such as data mining and machine learning can 

contribute on resolving that problem.

 

3.2 Research Questions and Methodology 
 

According to this study, three main questions are stated: 
 

1. Which is the most suitable model of this study? 

 

-22- 



2. Which one is the classifier with the best performance after investigating 

insightful evaluation metrics? 
 

3. Is there any approach to classify a new input article given by the user as fake or 

real? 

 

 

The methodology of this study is explained in six steps. 
 

 First, a uniformly sampled large dataset of web articles is extracted and 

collected. The type of these data may belong to fabrication, advertising, 

“Clickbait”, Parody or Propaganda category.


 Afterwards, pre-processing is applied to the data in order to be clean and 

structured for the analysis part.


 Convert the text of data into integers so the models of this study can extract 

insightful rules and patterns.


 Apply various machine learning algorithms on both models and discover the one 

with the best performance.


 According to the optimal model and classifier, calculate the weights for each 

word in the dataset.


 Finally, compute the Ranking index and label a new unseen input record which 

is given by the user.
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4 Design and Implementation 
 

In this section, three parts are presented. The first part is about the construction of the 

dataset, while the second part is referring to the necessary pre-processing stages for the 

data in order to be clean and structured. Finally, the last part is about the model 

contraction of this study: Bag of words and Tf-Idf model. 

 

4.1 Dataset 
 

The first step in order to find the ideal dataset regarding our analysis part was an 

online survey. Generally, there are multiple ways to retrieve data such as: fast checking, 

industry detectors, online platforms (Kaggle, github), and expert journalists. In our case, 

we searched on the mentioned platforms for the most widely used datasets according to 

our topic. The results were not encouraging due to certain reasons. In detail, in some 

cases the existence of real news was not possible. Other than that, there were scenarios 

without accurate labeling. Finally, another challenge for getting the dataset is time 

oriented. Verification of real time events and affairs is not an easy task.  

As a result, the methodology for extracting data was web scrapping combined with 

online dataset. More specifically, our final dataset includes 2 labels, real news: news 

that are provided by popular news articles websites and fake news: news that are 

confirmed to be fake. 
 

A python script was created, which can retrieve data from 3 websites: New York 

times, Reuters world news, Washington Post. All the information was labeled as real 

news while the total number of records is 534. The script was able to retrieve 45 real 

news data every day from all the 3 aforementioned websites. This relates to the fact 

that the front page of those websites is filled with renewed data approximately once 

per day. The entire process for real news data extraction lasted 12 days. The daily 

extraction of data is presented in figure 15: 
 

Websites Daily data extracted % of total Real news 
   

New York Times 20 45% 
   

Reuters 15 33% 
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Washington Post 10 22% 
 
 

 

The same methodology could not apply for the fake news part. There are websites, 

such as hoax-slayer which provide confirmed fake news, but the automation of the 

downloading process regarding the data could not be executed due to the page`s format. 

Only manual contribution is possible for extracting those desirable records.  

Subsequently, the fake news data were downloaded by 2 available datasets on 

Kaggle, alongside with hoax-slayer`s aforementioned manual procedure. Afterwards 

the fake news data were combined with the other part (Real news). The total number of 

fake records is 406. That leads to a dataset with a total number of 940 records with 

three attributes: Article Id, Title and Summary. 
 

 Article Id: The Id number of each article in the entire dataset.


 Title: large heading displayed above the article's content and the basis for the 

article's page name and URL.


 Summary: the text which briefly describes the entire article`s text with a 

specific format.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 15: Data examples 

 

Two online articles (New York Times & Washington Post) are observed on 

figure 2 as an example of the dataset`s attribute construction. More specifically, 

the Title consists of the bold words while the other part composes the Summary 

of the document. 
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4.2 Pre-processing stages 
 

Data pre-processing enables the transformation of raw data into an understandable 

format with structured substance. The extracted data for the study could be incomplete, 

inconsistent, unstructured or contain missing data. As a result, the classifier might not 

be able to operate or correctly execute its procedure. Data pre-processing is a method 

which efficiently resolves such situations (Technopedia) [17].  

According to our case, missing data were filled in order to avoid algorithmic failures 

in the analysis part. At the same time, punctuations and elements were removed from 

each document`s text so the noise in the dataset is minimized at a desirable level. 

Additionally, stop words were removed because their existence provides no insights or 

any useful information.  

Lastly, stemming and lemmatization techniques were applied to the dataset. 

Stemming is a technique which removes the end of a word or sometimes the beginning 

of a word. Stemming method is very useful in this study. For example, this process 

helps the model to handle two words with the same meaning (same information) but one 

in singular and one in plural, as one. Otherwise, the model will not be able to grasp that 

non-meaningful difference and as a result, it will accept them as distinct words.  

Lemmatization is a technique of converting the words to its original dictionary form. 

There are several dictionaries where the algorithm is allowed to investigate the 

morphological form of each word. Unquestionably, lemmatization is beneficial for our 

study because it achieves reduction of the inflectional forms of a word to a common 

base formation. (Risueno, 2018) [18]. 

 

4.3 Model Construction 
 

In this section, two models are discussed that were used in the analysis part. In detail, it 

is Bag of Words model and Tf-Idf Model. 

 

4.3.1 Bag of Words (BOW) Model 
 

The first model which was used for the analysis part is the bag of words (BOW) model. 

More specifically, count vectorizer can convert a collection of text documents to a 

matrix of token counts. Those tokens are unique, and they form a dictionary. As a 

result, the total size of the matrix is: Documents X unique tokens.  An example of the 

mentioned matrix is following on Figure 3. (Analytics Vidhya, 2017) [19] 
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Figure 16: Matrix of Bag of words model 

 

According to that matrix, it can be observed that the first term of the dictionary exists 10 

times in Document 1, 0 times in Document 2, 1 time in Document 3 etc. At the same 

time, the word vector and document vector can be seen on the marked areas for further 

details of each word or document, according to the term occurrences. Consequently, 

terms that are mostly used in fake or real news data can be spotted and afterwards give 

the necessary information to each algorithm about classifying an article. Finally, 

unusual words with low occurrences can be revealed which may lead to the fact that 

they are genuine for identifying real news in the collection of documents. 

 

4.3.2 Tf–Idf Model 
 

The second model of the study is Tf-Idf Model. This model is different from the bag of 

words model since it considers the occurrence of a word in the entire corpus and not in a 

single document. More specifically, it calculates the relative frequency of all the words 

in a document and compared with the inversion proportion of the specific word over the 
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whole corpus-dataset. The mathematical formula for calculating TF-IDF is following: 
 

for a term t in a document d, the weight Wt,d of term t in document d is given by: 
 
 

 

Wt, d = TFt,d log(N/DFt) , where: 
 
 

 

 TFt,d is the number of occurences of t in document d


 Dft is the number of documents containing the term t.


 N is the total number of documents in the collection of documents.
 

Besides that, it is significant to be stated that common words have higher TF-IDF 

values. According to our study, words with low participation will be scored with small 

Tf-idf values and this could give an insight. In detail, the fact that these words are rare 

could signify its authenticity and probably exist on real content. Usually, fake contents 

duplicate the format and some words that are in real news, so they will be clustered 

together with higher Tf-Idf values. In this study, the tf-idf vectorizer was used in order 

to convert the collection of raw documents into a matrix of Tf-Idf features and finally 

build the model (Ramos) [20]. 
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5 Experimental Results 
 
 
 

In this section the results of 5 different classifiers: Multinomial, Passive-Aggressive, 

MLP, AdaBoost, Logistic Regression will be presented with respect to both models. 

The metrics for the evaluation part are: 10 fold Cross-Validation on Accuracy and also 

accuracy, precision, recall, F1-score as well as the confusion matrix of a specific split. 

Finally, it is significant to mention that the test size is 33% of the total dataset. The 

major factor for deciding regarding the parameter tuning will be the average accuracy 

after 10 folds of out-of-sample Cross-Validation. Finally, the code was seeded with 

random estate = 10 for all the experiments. 

 

5.1 Multinomial Classifier 
 

The first algorithm is Naive Bayes classifier for multinomial models. The motivation 

for picking this classifier is because of its simple design which makes them very 

attractive. Moreover, they have been demonstrated to be fast, reliable and accurate in a 

number of applications. The specific classifier is ideal for discrete features, such as 

word counts for text classification and this is the beneficial reason for including it in the 

study. It is a fact, that alpha parameter affects the results of the classification and it  

needs further explaining. In detail, for each class y, the distribution is parameterized by 

vectors θy.= (θy1, …, θy2) where n is the number of features and θyi is the probability 

P(xi | y) of feature i appearing in a sample belonging to class y 
 
 
 
 
 
 
 
 
 
 

 

Where, 
 

 Nyi is the number of times feature i appears in a sample of class y in the 

training set T.

 Ny  is the total count of all features for class y.
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Alpha parameter may have values where a ≥ 0. This holds for features which are not 

present in the learning samples and avoids zero probabilities in further computations 

(Andrew McCallum, 1998) [21]. Different values of the alpha parameter where tried out 

in order to find out the best possible performance of the classifier. More specifically, a 

table of the most significant alpha values is following for Bag of words model: 
 

Alpha (a) Accuracy Precision Recall F1-score 
     

0.1 0.817 0.836 0.817 0.818 
     

0.2 0.823 0.839 0.823 0.824 
     

0.3 0.817 0.834 0.817 0.818 
     

0.4 0.810 0.828 0.810 0.812 
     

0.5 0.804 0.826 0.804 0.806 
     

0.6 0.803 0.825 0.803 0.806 
     

0.7 0.800 0.821 0.800 0.802 
     

0.8 0.804 0.825 0.804 0.806 
     

0.9 0.800 0.823 0.800 0.802 
     

1 0.794 0.820 0.794 0.796 
     

 

 

After all the experiments it can be revealed that the optimal value for the alpha 

parameter in Bag of Words model is 0.2. Also, it is a fact that as alpha parameter 

increases the performance of the Multinomial classifier slightly decreases. Finally, the 

confusion matrix is the following: 
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Figure 15 

 

The outcome of the Figure 18 shows that 112 out of the total 126 fake records were 

correctly predicted as fake, while there were 14 errors. On the other hand, 144 out of 

the total 185 real records were correctly predicted as real, while there were 41 errors. 
 

The same experiments were executed for the second model of the study (Tf-Idf 

Model). In specific, the table regarding the ideal alpha parameter is the following: 

 

 

Alpha (a) Accuracy Precision Recall F1-score 
     

0.1 0.826 0.847 0.826 0.828 
     

0.2 0.817 0.838 0.817 0.818 
     

0.3 0.817 0.838 0.817 0.818 
     

0.4 0.814 0.834 0.814 0.816 
     

0.5 0.820 0.834 0.820 0.822 
     

0.6 0.817 0.834 0.817 0.818 
     

0.7 0.817 0.832 0.817 0.818 
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0.8 0.817 0.830 0.817 0.818 
     

0.9 0.823 0.835 0.823 0.825 
     

1 0.823 0.835 0.823 0.825 
     

 

 

In this case, a = 0.1 constitutes the best option for Multinomial classifier. As a result, 

the accuracy of the algorithm after 10-fold cross validation reached the point of 

83.618%. The corresponding confusion matrix is below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 16 

 

Figure 19 clarifies that 115 out of the total 126 fake records were correctly predicted as 

fake, while there were 11 misclassifications. Afterwards, 142 out of the total 185 real 

records were correctly predicted as real, while there were 43 misclassifications. 
 

Undoubtedly, the used evaluation metrics revealed that the Multinomial classifier 

is marginally more efficient in Tf-idf model in comparison to Bag of words model. 
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Model Alpha Accuracy Precision Recall F1-score 10 fold 

      Cross- 

      Validation 
       

BOW 0.2 0.823 0.839 0.823 0.824 82.40% 
       

TF-IDF 0.1 0.826 0.847 0.826 0.828 82.80% 
       

 
 

 

5.2 Passive-Aggressive Classifier 
 
 

 

The second chosen algorithm for the analysis part is Passive-Aggressive classifier. 

Two parameters were tested in order to accomplish the best tuning of the algorithm. In 

detail, those are the parameter n_iter and C. 
 

 n_iter is the number of passes over the training data which is known as epochs.


 C is a float number which refers to the maximum step size (regularization).
 

To start with, 7 different values of n_iter were tested in order to see how the 

classifier reacts on those inputs. Hence, these are the results of the experiments 

according to BOW model: 

 

 

n_iter Precision Recall F1-score Cross- 

    Validation 
     

50 0.813 0.810 0.811 80.76% 
     

100 0.815 0.814 0.814 81.71% 
     

150 0.804 0.804 0.804 81.08% 
     

200 0.805 0.804 0.804 80.92% 
     

500 0.817 0.817 0.817 81.56% 
     

1000 0.804 0.804 0.804 81.08% 
     

5000 0.805 0.804 0.804 81.40% 
      
The best possible value for n_iter parameter is 100. However, it is important to 

mention that the alternations on the evaluation metrics are almost steady. Afterwards, 

the next parameter is C. After trying various inputs, the results revealed that C=0.01 is 

the best option for Bag of Words model. Some indicative values are presented: 
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Model C Accuracy 
   

BOW 0.01 0.804 
   

BOW 0.50 0.798 
   

BOW 1 0.800 
   

BOW 1.90 0.803 
   

 

 

Nevertheless, it decreases the overall accuracy of the classifier, so the parameter C 

was removed. Finally, the confusion matrix is following with tuned classifier: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 17 

 

The results of the Figure 17 show that 99 out of the total 126 fake records were 

correctly predicted as fake, while there were 27 errors. Also, 154 out of the total 185 

real records were correctly predicted as real, while there were 31 errors. 
 

The same experiments were tested out for the second model, Tf-Idf. Firstly, these are 

the results of n_iter trial and error procedure: 
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n_iter Precision Recall F1-score Cross Valida- 

    tion 
     

50 0.860 0.855 0.856 86.17% 
     

100 0.860 0.855 0.856 86.33% 
     

150 0.850 0.846 0.847 86.32% 
     

200 0.861 0.859 0.860 85.34% 
     

500 0.861 0.859 0.860 85.39% 
     

1000 0.871 0.868 0.869 85.53% 
     

5000 0.865 0.862 0.862 85.42% 
     

 

 

It is revealed that the best value for n_iter parameter is 1000 but all the outcomes are 

slightly different. Thereupon, the following table shows the C parameter reactions: 
 

Model C Accuracy 
   

TF-IDF 0.01 0.859 
   

TF-IDF 0.50 0.865 
   

TF-IDF 1 0.859 
   

TF-IDF 2.00 0.859 
   

 

 

Out of all cases, the most promising value for C parameter is 0.50 but as it seems the 

insertion of that parameter decreases the overall accuracy. As a result, the final decision 

was the deletion of the mentioned parameter. Finally, the confusion matrix is the last 

step for the evaluation part for the second model: 
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Figure 18 

 

Figure 18 reveals that 109 out of the total 126 fake records were correctly predicted as 

fake, while there were 17 errors. On top of that, 156 out of the total 185 real records 

were correctly predicted as real, while there were 29 errors. 
 

Observing the performance of Passive-Aggressive algorithm for both models, we 

conclude that the classifier`s utilization on Tf-Idf model outperforms thr BOW`s 

scenario. 
 

Model n_iter C Cross- Precision Recall F1-score 

   validation    

   Accuracy    
       

BOW 100 - 81.71% 0.815 0.814 0.814 
       

TF-IDF 1000 - 85.53% 0.871 0.868 0.869 
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5.3 Logistic Regression 
 

The third classifier used is Logistic Regression which is a liner classifier. The 

performance of this algorithm is widely tested in text-oriented problem and as a result, 

that was the main motivation for selecting it in the study. There are two parts for 

evaluating Logistic Regression. First, the classifier was tested without any parameters. 

The second part is referring to the addition of C parameter as a catalyst for tuning it in 

both models. It is significant to mention that C parameter is a float variable which 

signifies the regularization strength. In detail, smaller values specify stronger 

regularization. 
 

1
st

 PART: Bag of Words model 
 

Model Accuracy Precision Recall F1-score 10-fold 

     Cross val- 

     idation 
      

BOW 0.823 0.824 0.820 0.823 81.71% 
      

 

 

Additionally to those metrics, the confusion matrix gave those results: 
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Figure 19 

 

Figure 19 reveals that 89 out of the total 126 fake records were correctly predicted as 

fake, while there were 37 errors. At the same time, 167 out of the total 185 real records 

were correctly predicted as real, while there were 18 errors. So far, Logistic regression 

managed to predict more efficiently the Real records while on the other hand, it 

performed worse regarding Fake records compared to the other two classifiers. There is 

a comparative advantage in the second part of the confusion matrix. 
 

2
nd

 PART: Bag of Words model 
 

C Accuracy Precision Recall F1-score Cross- 

     Validation 
      

0.01 0.846 0.847 0.846 0.843 80.92% 
      

0.5 0.820 0.817 0.820 0.817 81.88% 
      

1 0.823 0.823 0.823 0.820 81.71% 
      

1.5 0.823 0.823 0.823 0.820 82.03% 
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2.0 0.826 0.826 0.826 0.824 82.03% 
      

 

 

The best value for C is 2 which is the point with the stronger regularization. Bigger 

inputs of C (C > 2.0) give us the same results or worse repeatedly. Finally, the 

confusion matrix with the correct tuning of the classifier is following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 20 

 

After tuning, it can be observed that there is an improvisation on the first part of the 

matrix (Fake label predictions) but at the same time, the predictions on the second part 

of the matrix (Real label predictions) are worse. Overall, the error was slightly 

decreased. 
 

Afterwards, the same process with regards to TF-IDF model is following. 
 

1
st

 PART: TF-IDF model 
 

Model Accuracy Precision Recall F1-score 10-fold 

     Cross val- 

     idation 
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TF-IDF 0.859 0.862 0.859 0.856 79.32% 
      

 

 

Confusion matrix results are presented below:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21 

 

The Figure 21 reveals that 93 out of the total 126 fake records were correctly predicted as 

fake, while there were 33 errors. Also, 174 out of the total 185 real records were correctly 

predicted as real, while there were 11 errors. Without the tuning process, it seems that TF-

IDF model beats Bag of Words model with Logistic Regression classifier. 

 

 

2nd PART: TF-IDF model 
 

C Accuracy Precision Recall F1-score Cross- 

     Validation 
      

0.01 0.596 0.354 0.595 0.444 55.48% 
      

 
 

 

-40- 



0.5 0.823 0.836 0.823 0.816 75.20% 
      

1 0.859 0.862 0.859 0.856 79.32% 
      

1.5 0.868 0.870 0.868 0.867 80.76% 
      

2.0 0.871 0.872 0.871 0.870 81.72% 
      

2.5 0.873 0.876 0.873 0.870 82.67% 
      

3 0.875 0.879 0.875 0.870 83.30% 
      

 

 

In comparison with Bag of Words model, the results here are a slightly different. More 

specifically, the value of 3 for C parameter led the model into chaotic predictions. It is 

significant to mention that the 10-fold cross validation of the 1
st

 part for the applied 

classifier on TF-IDF model is lower than the individual evaluation metrics. That 

outcome verifies the above suspicions. Consequently, the model failed under the 

pressure of the value with greatest regularization strength. Moreover, it is noticeable 

that as the value of C increases it greatly improves the performance of the classifier 

through all the stages. As a result, the best value of C parameter for this case is 3. The 

relevant confusion matrix is following: 
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Figure 22 

 

The predictions regarding the first part of the confusion were greatly enhanced and 

the error was decreased. But, the inaccuracy on the second part of matrix was slightly 

increased. Generally, the miscalculations were diminished. 
 

After all the analysis, it appears that TF-IDF model surpassed Bag of Words 

model regarding Logistic Regression`s case. 

 

 

Model C Cross Validation Precision Recall F1-score 

  Accuracy    
      

BOW 2.0 82.03% 0.826 0.826 0.824 
      

TF-IDF 3.0 83.30% 0.879 0.875 0.870 
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5.4 AdaBoost Classifier 
 
 

 

The fourth algorithm in the study is the AdaBoost Classifier. The classifier is a meta-

estimator that begins by fitting a classifier on the original dataset and then fits additional 

copies of the classifier on the same dataset but where the weights of incorrectly 

classified instances are adjusted such that subsequent classifiers focus more on difficult 

cases. Hence, it is quite alluring to check the results and how the classifier reacts 

regarding the distribution of the weights. The interested parameter is called n_estimators 

according to sklearn library which was imported in Python. In specific, this parameter 

refers to the maximum number of estimators at which boosting is terminated. When the 

perfect fit is accomplished, the learning procedure is interrupted early. Thence, the 

experiments are divided into two parts. The first part is concerning the results of the 

chosen algorithm`s performance without any parameters included. The second part 

involves the examination of the outcomes regarding the addition of n_estimators 

parameter into the classifier`s execution. It is significant to comment that the AdaBoost 

algorithm was tested in both models (BOW & TF-IDF). 

 

 

1
st

 PART: Bag of Words model 
 

Model Accuracy Precision Recall F1-score 10-fold 

     Cross val- 

     idation 
      

BOW 0.852 0.851 0.852 0.851 82.34% 
      

 

 

In addition to those evaluation metrics, confusion matrix showed this outcome: 
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Figure 23 

 

The Figure 23 reveals that 98 out of the total 126 fake records were accurately 

predicted as fake, while there were 28 errors. Concurrently, 167 out of the total 185 real 

records were also properly predicted as real, while there were 18 errors. 

 

 

2
nd

 PART: Bag of Words model 
 

Four values of the parameter n_estimators were test and the code proceeded to this 
 

output: 
 

n_estimators Accuracy Precision Recall F1-score 10-fold 

     Cross 

     validation 
      

100 0.842 0.842 0.842 0.841 81.39% 
      

200 0.856 0.856 0.856 0.856 83.95% 
      

300 0.836 0.838 0.836 0.836 82.52% 
      

400 0.797 0.811 0.797 0.799 77.11% 
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As it can be observed, when n_estimators takes the value of 200 the classifier hits the 

maximum accuracy which is marginally better than the case without any parameters 

(1
st

 Part). All the other possible input values have a negative impact to the accuracy 

with respect to the previous state. 
 

Similar procedure for the TF-IDF model will be presented next. 
 
 

 

1
st

 PART: TF-IDF model 
 

Model Accuracy Precision Recall F1-score 10-fold 

     Cross val- 

     idation 
      

TF-IDF 0.823 0.822 0.823 0.822 82.34% 
      

 

 

. Confusion matrix of this experiment is following: 
 

z  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 24 
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The Figure 24 shows that 95 out of the total 126 fake records were correctly predicted 

as fake, while there were 31 errors. Simultaneously, 161 out of the total 185 real records 

were also properly predicted as real, while there were 24 miscalculations. 

 

 

2
nd

 PART: TF-IDF model 
 

n_estimators Accuracy Precision Recall F1-score 10-fold 

     Cross 

     validation 
      

100 0.814 0.813 0.813 0.813 85.05% 
      

200 0.791 0.798 0.791 0.792 77.58% 
      

300 0.765 0.781 0.765 0.767 78.54% 
      

400 0.772 0.787 0.772 0.774 76.79% 
      

 

 

Undoubtedly, the experiment results are optimal when n_estimators = 100 for this case. 

Overall, after that point it is a fact that when n_estimators increases the performance of 

the classifier is decreasing. 
 

According to analysis part, it is a fact that overall AdaBoost classifier has a greater 

performance in Tf-Idf model in comparison with Bag of word`s case. The ideal 

performances for both models according to this algorithm are presented below: 
 

Model n_estimators Accuracy Precision Recall F1-score 10-fold 

      Cross val- 

      idation 
       

BOW 200 0.856 0.856 0.856 0.856 83.95% 
       

TF-IDF 100 0.814 0.813 0.813 0.813 85.05% 
       

 

 

In conclusion, it is interesting to notice an output which is based on the learning_rate 

parameter. This parameter shrinks the contribution of each classifier. There is a trade-

off between learning_rate and n_estimators. By inserting the value of 3 to the 

learning_rate parameter which is an extreme case, the confusion matrixes for BOW & 

TF-IDF are the following: 
 

 Bag of Words
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Figure 25 
 

 TF-IDF
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Figure 26 

 

In both cases, the predictions regarding the first part of the matrix are ruined but 

surprisingly, the second of part of the matrix is significantly improved. This behavior 

can be translated that as follows: as the number of estimators increases, the predictions 

approach the perfection with respect to the second part of the confusion matrix. 

Nevertheless, the overall accuracy of the classifier was dropped. 

 
 
 

 

5.5 MLP Classifier 
 
 

 

The last tested classifier for this study is Multi-Layer Percepton which is a 

supervised learning algorithm. MLP can learn a non-linear function approximator and it 

is different from logistic regression since it is between the input and the output layer, 

there can be one or more non-linear layers, called hidden layers. Essentially, that was 

the motivation for including it to the list of the tested algorithms regarding the study. 

MLP classifier implements various parameters according to the sklearn library. The first 

sig- 
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nificant parameter is called alpha, which helps in avoiding overfitting by penalizing 

weights. As a result, the parameter is related to the regularization phenomenon. An 

example of different input values of alpha is following alongside with three model`s 

reactions which were generated in sklearn`s documentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 27: different values of alpha parameter 

 

Unquestionably, as alpha parameter increases, the decision function of the classifier is 

adjusted to the model`s behavior. Consequently, cross validation method thrives of 

importance for the experiments due to possible overfitting situation. Some of these 

values will be tried out and examined in this study. Likewise, in previous algorithm 

cases, the experiments are split into two parts. The first section is about results with 

respect to non-parametric execution of the specific classifier and the second section is 

described 
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by experiments with parameters added while the major evaluation metric will be the 10-

fold cross validation. 

 

 

1
st

 PART: Bag of words model 
 

 

Model Accuracy Precision Recall F1-score 
     

BOW 0.804 0.808 0.804 0.799 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28 

 

The Figure 28 shows that 81 out of the total 126 fake records were accurately predicted 

as fake, while there were 45 errors. Also, 169 out of the total 185 real records were also 

properly predicted as real, while there were 16 wrong predictions. The performance of 

the classifier on the second part of the matrix is exceeding with regards to the results of 

the first part. 
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2
nd

 PART: Bag of words model 
 

Alpha Accuracy Precision Recall F1-score 10 fold 

     Cross-  

     validation 
      

1e-05 0.826 0.830 0.826 0.823 81.55% 
      

0.001 0.833 0.834 0.833 0.830 80.28% 
      

0.1 0.826 0.826 0.826 0.825 82.04% 
      

0.2 0.814 0.813 0.814 0.811 82.35% 
      

0.3 0.807 0.806 0.807 0.805 82.20% 
      

10.0 0.814 0.819 0.814 0.808 81.24% 
       

 

 

As it was mentioned before, the crucial evaluation metric for this case is the outcome of 

Cross Validation`s process. This goal is accomplished when a parameter takes the value 

of 0.2 but overall the results are not that different. The fluctuation according to the 

specific evaluation metric is approaching to be smooth as the alpha parameter increases. 
 

1
st

 PART: TF-IDF model 
 

 

Model Accuracy Precision Recall F1-score 
     

TF-IDF 0.846 0.857 0.846 0.847 
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Figure 29 

 

The presented confusion matrix displays that 113 out of the total 126 fake records 

were accurately predicted as fake, while there were 13 inaccurate predictions. Besides 

that, 150 out of the total 185 real records were also properly predicted as real, while 

there were 35 missteps. Interestingly, the performance of the classifier on the first part 

of the matrix is superior with respect to the results of the second`s part which is the 

opposite outcome of BOW model`s scenario. 

 

 

2
nd

 PART: TF-IDF model 
 

Alpha Accuracy Precision Recall F1-score 10-fold 

     Cross val- 

     idation 
      

1e-05 0.842 0.853 0.842 0.844 83.30% 
      

0.001 0.842 0.853 0.842 0.844 83.62% 
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0.1 0.859 0.859 0.859 0.859 85.84% 
      

0.2 0.855 0.855 0.855 0.855 84.74% 
      

0.3 0.855 0.856 0.855 0.855 85.55% 
      

10.0 0.595 0.354 0.595 0.444 55.48% 
      

 

 

In general, the 10-fold cross validation scores for TF-IDF model are preferable over 

BOW`s model outputs with MLP classifier. The best score is achieved with a=0.1 while 

it is significant to be mentioned that values of a ≥ 10 lead the classifier into a very poor 

performance. This value signified that from this point the bad classifications begin and 

as a result, greater values than 10 were not tested. 
 

To sum up, the optimal choice according the alpha parameter value selection for the 
 

MLP classifier for both models is: 
 

Model alpha Accuracy Precision Recall F1-score 10-fold 

      Cross val- 

      idation 
       

BOW 0.2 0.814 0.813 0.814 0.811 82.35% 
       

TF-IDF 0.1 0.859 0.859 0.859 0.859 85.84% 
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6 Evaluation and Discussion 
 
 
 

After discovering the optimal values for each parameter on all classifiers, cross-

validation technique will be applied to the rest evaluation metrics in order to compare 

all the possible models. The following table contains all the mentioned outcomes with 

10 folds cross-validation: 

 

 

Model Classifier Parame- Precision Recall F-score Accuracy Time to 

  ter     build the 

       model 
        

BOW  a = 0.2 83.90% 82.30% 82.40% 82.40% FAST 

 Multinomi-       
 

al 
      

TF-IDF a = 0.1 84.70% 82.60% 82.80% 82.80% FAST 

        

BOW  n_iter = 81.68% 81.08% 80.84% 81.71% FAST 

 Passive- 100      
 

Aggressive 
      

TF-IDF n_iter = 85.58% 85.53% 85.47% 85.53% FAST 

  1000      
        

BOW  n_estimat 84.71% 83.95% 83.67% 83.95% MODER- 

 
AdaBoost 

ors = 200     ATE 
       

TF-IDF  n_estimat 85.46% 85.06% 84.93% 85.05% MODE- 

  ors = 100     TRATE 
        

BOW  C = 2.0 82.96% 82.03% 81.65% 82.03% FAST 

 Logistic       
 

Regression 
      

TF-IDF C = 3.0 84.63% 83.31% 82.89% 83.30% FAST 

        

BOW  a = 0.2 83.41% 82.52% 81.99% 82.35% SLOW 

 MLP       

TF-IDF  a = 0.1 85.88% 85.57% 85.69% 85.84% SLOW 
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The table shows the entire classifier`s results with the corresponding evaluation 

metrics. To start with, it is significant to be mentioned that the major technique for 

evaluating our models is the accuracy of 10-fold cross-validation. According to that 

procedure, the classifiers predicted the test set with different training sets (out-of-sample 

testing). More specifically, the number of altered training sets is 10, so it calculates the 

average accuracy of all the 10 folds process. As a result, with regards to the mentioned 

machine learning technique, insights will arise about how well the models perform on 

unseen data. Empirical knowledge about the generalization rule of each model is 

obtained. The best model with respect to the accuracy metric is MLP with a score of 

85.84% which is followed by Passive-Aggressive classifier with 85.53% score. Both 

classifiers have high performance, while they achieved those similar evaluation scores 

on Tf-Idf model. Additionally, the precision, recall and f1-scores results are very similar 

for both models. Their differences are almost negligible. Therefore, the mandatory time 

for each classifier to build the model was considered. The needed time for Passive-

Aggressive classifier to execute the procedure was very low in contrast to MLP. This 

constitutes a disadvantage of MLP and it is significant to be stated. Most importantly, in 

general, the necessary time for the MLP classification`s finalization was the most 

immense out of all required times for the rest algorithms. This aftermath was expected 

because it belongs to the Neural Network family with a lot of computations involved. 
 

Classifiers BOW TF-IDF 
   

Multinomial  ✓ 
   

Passive-Aggressive  ✓ 
   

Logistic Regression  ✓ 
   

AdaBoost  ✓ 
   

MLP  ✓ 
   

 

 

Overall, it is clear that all classifiers produced better results in TF-IDF model than Bag 

of words model. This outcome is related to the fact that TF-IDF model takes into 

account the occurrence of a word in the entire corpus and not in a single document. As a 

result, the same words in all documents are connected and affect the decision and rules 

of each classifier differently, while in Bag of words the words are treated individually in 

each document. 
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7 Ranking Model Approach 
 
 
 

The innovation of this study is about a new model which can label a new input data 

which is given by the user as Fake or Real. This model is called Ranking Model 

Approach. In detail, this approach is related with an index, which is able to inspect each 

unique observed word with respect to its contribution for being fake or real. Some 

words are more likely to be seen in fake records or in real records. This indicator is 

called Ranking index. Positive values of this index signal the words to be labeled as real 

contributors, while negative values mark the words as fake contributors. A new text-

input by the user will be rated according to the sum of each word`s ranking index value. 

More specifically, if the input is composed of five words w1,w2,w3,w4,w5, the score s 

will be the aggregation of the numerical values of each word`s Ranking index 

r1,r2,r3,r4,r5 as it follows below: 

 

 

S = W1 (r1) + W2 (r2) +W3 (r3) + W4 (r4) + W5 (r5) 
 
 
 

 S > 0 means that the text will be labeled as Real


 S < 0 means that the text will be labeled as Fake


 S = 0 means that the text has the same possibilities to be Fake or Real. 

Nevertheless, this is an extreme scenario.
 

Additionally, it is significant to be mentioned that higher numerical values of the S 

score are guaranteeing greater insurance about the final taken decision by the Ranking 

Model. 
 

The catalyst factor for the classification of a new unseen data is the ranking index. 

This indicator is calculated according to two steps. Firstly, a vectorizer is needed which 

could arise from Bag of Word`s model or Tf-Idf`s model. The vectorizer is able to 

convert the collection of documents into a matric of token counts. At evaluation and 

discussion part, Tf-Idf model accomplished better performance and came up to be more 

efficient than Bag of Words model. Consequently, the Tf-idf vectorizer will be used as 

the first argument for the creation of the mentioned indicator. Secondly, the other 

argument is achieved through the ideal algorithm of our classification analysis part. 

Hence, it is 
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proved that Passive-Aggressive algorithm with n_iter = 1000 as its tuned parameter, is 

the best choice. Each classifier produces different results with regards to the calculation 

of the ranking index, but the optimal outcome for the Ranking Model is reached with the 

best classifier`s performance. In our study, the following picture inspects the words with 

the top ten ranking index`s values for real and fake class: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 30: Ranking index for real and fake words 

 

According to the above picture, words with political content seem to achieve the 

greatest contribution regarding the fake class. At the same time, words like mr, ms, 

president and prime contribute more with respect to the real class. Undoubtedly, the 

mentioned words which are characterized by a formally formatted style are mostly 

observed to be in real data records. 
 

The text-input given by the user will be pre-processed similarly with the rest dataset. 

More specifically, the final form of the new data will be achieved through these pre-

processing stages: 

 

New input  Remove punc-  Filter out  Stemming and 

given by the  tuations and  stopwords  Lemmatization 

user  noisy elements    techniques 

       
 
 

 

The flow chart of the Ranking model according to its decision steps is presented below: 
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TF-IDF MODEL BAG OF WORDS 
  

MODEL 
 
 
 
 
 
 
 
 
 
 
 
 

 

Which  is  the  best 
 

classifier`s per- 
 

formance? 
 
 
 
 
 
 
 
 
 
 
 

 

Identify features given the optimal vectoriz- 
 

er and classifier 
 
 
 
 
 
 
 
 

 

New Input and both 
 

Ranking Index & Score 
 

value calculation 
 
 
 
 
 
 
 
 
 
 

FAKE if Score < 0 TRUE if Score > 0 
 
 

 

Figure 31: Flow chart of Ranking Model 
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In our study, by taking into account the steps presented on the figure 31, the Ranking 

model will behave as it is shown to the following stages: 
  

1
st

 argument: Tf-idf vectorizer 
 

(because Tf-idf > Bow model ac- 
 

cording to this study) 
 
 
 
 

 

2
nd

  argument: Passive - Aggres- 
 

sive classifier 
 

(because  PA  algorithm  has  the 
 

best performance in this study) 
 
 

 

New input by the user and pre- 
 

processing stages 
 

(presented on the figure) 
 
 
 
 

 

Ranking Index calculation 
 

(with respect to the above argu- 
 

ments) 
 
 
 
 

 

Score value calculation 
 

(by aggregating the individual 
 

ranking index values of each 
 

word of the given input) 
 
 

 

Label the input as fake or real 
 

(Score > 0 the input is classified 
 

as real and Score < 0 the input is 
 

classified as fake) 
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Finally, it is significant to be mentioned that the addition of new data to dataset will 

affect all the results. As the dataset increases, the dictionary which contains each unique 

observed word will be enlarged and consequently the outcomes of the analysis will 

alter. The ranking model is dynamic regarding to possible changes in the dataset in 

order to increase the dictionary of the words. 
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8 Conclusions and future work 
 
 
 

The aim of this dissertation was to discover an efficient way to label an article as 

fake or real with respect to machine learning concepts and decisions from classification 

algorithms. In detail, this outcome was achieved through four analysis parts. 
 

The first part is referring to the data extraction, preparation and model construction. The 

data extraction was very challenging because the web choices are limited, not that 

qualitative and sometimes unstructured. As a result, web scrapping on article websites 

was a method to surpass and overcome this problem. Afterwards, the finalized dataset 

was pre-processed according to well-known and useful text-oriented techniques, such as 

stemming and lemmatization. Finally, the text-data needed to be converted into 

meaningful numerical values, so the classifiers can fully-operate and execute their 

algorithmic parts. Two models were selected for that goal, Bag of words model and Tf-

Idf model. The crucial part to be mentioned is that those models have a major 

difference. The Tf-idf model considers the occurrence of a word in the entire corpus, 

while the bag of words model in a single document. It is notable to investigate the 

performance and reaction from well-known classification algorithms. 
 

The second section is related to the experimental results. In detail, five algorithms 

were tested and their behavior was investigated. The selected algorithms are 

Multinomial Naïve Bayes, Passive-Aggressive, Logistic Regression, AdaBoost and 

MLP. Different parameter values for each classifier were used in order to find the best 

possible outcomes. 
 

The third part of the thesis is about the evaluation and discussion of the performance 

for each classifier. The used evaluation metrics were precision, recall, f1-score, 

confusion matrix and the necessary time to build the model, while cross-validation 

technique with 10 folds was applied in order to check the regularization rule for every 

model. It ended that the classifiers with the most effective performance are Passive-

Aggressive 
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and MLP. However, the Passive-Aggressive algorithm was ideal with respect to the 

mandatory operational time. 
 

The final part is related to the innovation of this study. More specifically, the 

Ranking Model approach is introduced. According to that model, a new input data given 

by the user can be labeled regarding our two classes. In order to achieve that, a ranking 

index had to be calculated, which needs two arguments. The first argument refers to the 

ideal vectorizer for the text-conversion into numerical values. It was revealed that all 

classifiers performed better in Tf-idf model than in the Bag of Words model. As a 

result, tf-idf vectorizer was selected. The second argument is about the optimal 

classifier of the study. As shown in the previous section, passive-aggressive achieved 

the best performance, so it was preferred amongst the rest algorithms. Hence, the 

calculation of the ranking index was computed, and the model was capable to classify 

new unseen data efficiently. By doing that, the scope of the study was accomplished. 

 

8.1 Future work 
 
 

 

Several different adaptations, tests, and experiments have been left for future work 

due to scope limitations. Future work concerns deeper analysis of particular 

mechanisms, new proposals to try different methods, etc. There are some ideas that I 

would have liked to try during the entire procedure. 
 

1. The enlargement of the dataset with regards to the web scrapping meth-

od. It would be interesting to see how the Ranking Model reacts on a bigger 

dictionary of words, because all the results would be different. 
 

2. Additional classifiers in order to discover more experimental results and 

observe the performance of the new classifiers. It may be that the top classifier 

of this study, passive - aggressive, is outperformed by the new algorithms. As a 

result, the Ranking model would be more efficient, due to the alteration of one 

of its arguments. 
 

3. The ranking model could contain more than two classes. For example, 

there could be four classes: fake: high probability, fake: lower probability, real: 

high probability, real: lower probability. More specifically, the score indicator is 

able to provide numerical values, which can be interpreted with confidence 

boundaries such us the above. The interesting part is to discover the point (nu- 
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merical values of Score variable), where the classes are separated efficiently. 

The outcome of this procedure will be the production of an accurate decision 

function for the Ranking model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
-63- 



 



 
 

 

Bibliography 
 
 
 

[1] Kai Shu, A. S. (2017). Fake News Detection on Social Media: A Data Mining 

Perspective. Arizona, USA. 
 

[2] Edson C. Tandoc Jr., Z. W. (2018). Defining "Fake news". Digital Journalism, 137-

153. 
 

[3] Gentzkow, H. A. (2017). Social Media and Fake News in the 2016. Journal of 

Economic Perspectives, 211–236. 
 

[4] Condren, C. D. (2008). Defining parody and satire: Australian copyright law and its 

new exception: Part 2 - Advancing ordinary definitions. 401-421. 
 

[5] Gatov, V.  (2018, January 18).  Propaganda in a  Fake  News  World.  Russia. 

http://intersectionproject.eu/article/russia-world/propaganda-fake-news-world 
 

[6] Lewis, D. D. (n.d.). Naive (Bayes) at Forty: The Independence Assumption in 

Information Retrieval. 
 

[7] Koby Crammer, O. D.-S. (2006). Online Passive-Aggressive Algorithms. Journal of 

Machine Learning Research, 551-585. 
 

[8] Brownlee, J. (2016, April 25). Boosting and AdaBoost for Machine Learning. 
 

[9] Statistics Solutions. (n.d.). Statistics Solutions: 

 https://www.statisticssolutions.com/what-is-logistic-regression/  
 

[10] Brownlee, J. (2016, May 17). Crash Course on Multi-Layer Perceptron Neural 

Networks. 
 

[11] Joshi, R. (2016, September 9). Accuracy, Precision, Recall & F1 Score: 

Interpretation of Performance Measures. 

[12] Brownlee, J. (2016, March 21). Overfitting and Underfitting With Machine 

Learning Algorithms. 
 

[13] Niall J. Conroy, V. L. (n.d.). Automatic Deception Detection: Methods for Finding 

Fake News. 

 
 

 

-65- 



[14] Benjamin Riedel, I. A. (2018, May 21). A simple but tough-to-beat baseline for the 

Fake News Challenge stance detection task. 
 

[15] British Council. (n.d.). 
 

http://learnenglishteens.britishcouncil.org/skills/reading/advanced-c1-

reading/rise-fake-news 
 

[16] David M. J. Lazer, M. A. (2018, March 9). The science of fake news. 
 
[17] Technopedia. (n.d.). https://www.techopedia.com/definition/14650/data-

preprocessing 
 
[18] Risueno, T. (2018, February 28). Bitext. retrieved from 
 

https://blog.bitext.com/what-is-the-difference-between-stemming-

and-lemmatization/ 
 

[19] Analytics Vidhya. (2017, June 4). retrieved from 
 

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-

count-word2veec/ 
 

[20] Ramos, J. (n.d.). Using TF-IDF to Determine Word Relevance in Document 

Queries. 
 
[21] Andrew McCallum, K. N. (1998). A comparison of event models for Naive Bayes 

text classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
-66- 



 
 

 

9 Appendix 
 

 

9.1 Web scrapping code 
 

from urllib.request import urlopen as uReq 

from bs4 import BeautifulSoup as soup 

 
########################################### NYtimes 

 
my_url = 'https://www.nytimes.com/section/world' 

 
#opening connections and grabbing the 

page uClient = uReq(my_url) page_html = 

uClient.read() 

uClient.close() 

 
#html parsing 

page_soup = soup(page_html,"html.parser") 

 
#grabs each article 

articles = page_soup.find_all("div",{"class": "story-meta"}) 

 
filename = "RealnewsNY10.csv"  
f = open(filename,"w") 

 
Label = 'Real'   

headers = "Title, Summary, Label\n"  

f.write(headers)  

print("NYtimes worlds news ----------------------------- ") 

for article in articles:  
 

 
title_article = article.find_all("h2",{"class":"headline"})  
title = title_article[0].text.replace(","," ").strip() 

 
summary_article = article.find_all("p",{"class":"summary"}) 

summary = summary_article[0].text.replace(","," ") 

 
f.write(title + "," + summary + "," + Label + "\n") 

 
f.close() 

 
########################################### Reuters 

 
my_url2 = 'https://www.reuters.com/news/world' 

 
#opening connections and grabbing the 

page uClient = uReq(my_url2) page_html = 

uClient.read() 

uClient.close() 
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#html parsing 

page_soup = soup(page_html,"html.parser") 

 
#grabs each article  
articles = page_soup.find_all("div",{"class": 

"ImageStoryTem-plate_image-story-container"}) 

 
filename = "RealnewsReuters10.csv" 

f = open(filename,"w") 

 
Label = 'Real'   
headers = "Title, Summary, Label\n"  

f.write(headers)  

print("Reuters worlds news ----------------------------- ") 

for article in articles:  
 

 
title_article = arti- 

cle.find_all("h2",{"class":"FeedItemHeadline_headline"}) 

title = title_article[0].text.replace(","," ").strip() 

 
summary_article = arti-  

cle.find_all("p",{"class":"FeedItemLede_lede"}) 

summary = summary_article[0].text.replace(","," ") 

 
f.write(title + "," + summary + "," + Label + "\n") 

 
f.close() 

 
########################################### The Washington Post 

 
my_url3 =  
'https://www.washingtonpost.com/news/worldviews/?utm_term=.f120edf532

6 e' 

 
#opening connections and grabbing the page 

uClient = uReq(my_url3) page_html = 

uClient.read() 

uClient.close() 

 
#html parsing 

page_soup = soup(page_html,"html.parser") 

 
#grabs each article  
articles = page_soup.find_all("div",{"class": "story-body col-xs-

8 col-md-8"}) 

 
filename = "RealnewsWashingtonP10.csv" 

f = open(filename,"w") 

 
Label = 'Real' 

headers = "Title, Summary, Label\n" 

 
f.write(headers) 

 
print("Washington worlds news -----------------------------") 

 
for article in articles: 
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title_article = article.find("div",{"class":"story-headline"}) 

title_article = title_article.h3.a.get_text() 

title = title_article.replace(","," ").strip() 

 
summary_article = 

article.find("div",{"class":"story-description"}) 

summary_article = summary_article.p.get_text() 

summary = summary_article.replace(","," ") 

 
f.write(title + "," + summary + "," + Label + "\n") 

 
f.close() 

 
 

 

9.2 Main code 
 

import pandas as pd 

import numpy as np 

import sklearn 

import re 

import nltk  
from nltk.corpus import stopwords  
from nltk.stem.porter import PorterStemmer 

from nltk.stem import WordNetLemmatizer from 

stemming.porter2 import stem 

from sklearn.metrics import confusion_matrix  
from sklearn.metrics import precision_score, 

recall_score, make_scorer, f1_score, accuracy_score  
from sklearn.ensemble import RandomForestClassifier, 

AdaBoostClassifi-er  
from sklearn.linear_model import 

LogisticRegression from sklearn.neural_network 

import MLPClassifier from sklearn.metrics import 

average_precision_score from sklearn import svm 

from sklearn.naive_bayes import MultinomialNB  
from sklearn.linear_model import PassiveAggressiveClassifier 

from sklearn.feature_extraction.text import 

HashingVectorizer from sklearn import metrics  
from sklearn.metrics import classification_report 

from sklearn import preprocessing  
from sklearn.feature_extraction.text import 

CountVectorizer from sklearn.feature_extraction.text 

import TfidfVectorizer from sklearn.exceptions import 

NotFittedError import itertools 

import string 

from matplotlib import pyplot as plt  
from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import train_test_split 

 

 
#Importing my dataset  
dataset = pd.read_csv(r"C:\Users\Vakis\Desktop\DatasetFR2.csv", 

encod-ing="ISO-8859-1") 

 
#Preprocessing stages of our dataset  
# The English stop words are used to remove specific words and 
very commonly used words 
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stpwds = set(nltk.corpus.stopwords.words("english")) 

 
#Fit NaN values with spaces 

dataset = dataset.fillna(' ') 

 
#preprocessing of our data 

for i in range(0,len(dataset['summary'])):  
#remove noisy elements 

dataset['summary'][i] = re.sub(r'[^a-zA-Z]', ' ', 

str(dataset['summary'][i])) 

 
#Stemming and Lemmatizing  
porter_stemmer = PorterStemmer() 

wordnet_lemmatizer = WordNetLemmatizer() 

for i in range(0,len(dataset['summary'])):  
dataset['summary'][i] = por- 

ter_stemmer.stem(str(dataset['summary'][i])) 

dataset['summary'][i] = word- 

net_lemmatizer.lemmatize(str(dataset['summary'][i])) 

 
# Creating y variable y = 
dataset.label 

dataset.drop("label",axis=1) 

 
#Train and Test data split  
X_train, X_test, y_train, y_test =  
train_test_split(dataset['summary'], y, test_size=0.33, 

ran-dom_state=10) 

 
#Initialize CountVectorizer  
count_vectorizer = CountVectorizer(stop_words='english') 

 
#Fit and transform count vectorizer on summary for train and test 

data count_train = count_vectorizer.fit_transform(X_train) count_test 

= count_vectorizer.transform(X_test) 

 

 
#Initialize CountVectorizer 

tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_df=0.9) 

 
#Fit and transform tfidf on summary for train and test 

data tfidf_train = tfidf_vectorizer.fit_transform(X_train) 

tfidf_test = tfidf_vectorizer.transform(X_test) 

 
count_df = pd.DataFrame(count_train.A, col-

umns=count_vectorizer.get_feature_names()) 

tfidf_df = pd.DataFrame(tfidf_train.A, col-

umns=tfidf_vectorizer.get_feature_names()) 

 
difference = set(count_df.columns) - set(tfidf_df.columns) 

 
print(count_df.equals(tfidf_df))  
print(count_df.head()) 

print(tfidf_df.head()) 

 
#Construction of confusion matrix as an evaluation 

option def plot_confusion_matrix(cm, classes,  
normalize=False, 

title='Confusion matrix', 

cmap=plt.cm.Reds):  
""" 
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See full source and example: 

http://scikit-  
learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.

h tml 

 
This function prints and plots the confusion matrix. 

Normalization can be applied by setting `normalize=True`. 

""" 

plt.imshow(cm, interpolation='nearest', cmap=cmap) 

plt.title(title)  
plt.colorbar() 

tick_marks = np.arange(len(classes)) 

plt.xticks(tick_marks, classes, rotation=45) 

plt.yticks(tick_marks, classes) 

 
if normalize:  

cm = cm.astype('float') / cm.sum(axis=1)[:, 

np.newaxis] print("Normalized confusion matrix") 

else: 

print('Confusion matrix, without normalization') 

 
thresh = cm.max() / 2.  
for i, j in itertools.product(range(cm.shape[0]), 

range(cm.shape[1])):  
plt.text(j, i, cm[i, j], 

horizontalalignment="center", 

color="white" if cm[i, j] > thresh else "black") 

 
plt.tight_layout() 

plt.ylabel('True label') 

plt.xlabel('Predicted label') 

plt.show() 

 
#Inspect the most informative words for fake and real news 

respective-ly  
def most_informative_feature_for_binary_classification(vectorizer, 

classifier, n=100): 

""" 

See: https://stackoverflow.com/a/26980472 

 
Identify most important features if given a vectorizer and 

binary classifier. Set n to the number  
of weighted features you would like to show. (Note: current 

imple-mentation merely prints and does not 

return top classes.)  
""" 

 
class_labels = classifier.classes_ 

feature_names = vectorizer.get_feature_names()  
topn_class1 = sorted(zip(classifier.coef_[0], feature_names))[:n] 

topn_class2 = sorted(zip(classifier.coef_[0], feature_names))[-n:] 

 
for coef, feat in topn_class1: 

print(class_labels[0], coef, feat) 

 
print() 

 
for coef, feat in reversed(topn_class2): 

print(class_labels[1], coef, feat) 
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############################### TF IDF 

MODEL ###############################  
print("------------------------------TF-IIDF MODEL CLASSIFICATION----- 

-----------------------") 

 
################Importing MultinomialNB 

classifier :Classifier1##################  
classifier1 = MultinomialNB(alpha=0.1) 

 
#fit the classifier X_train  
classifier1.fit(tfidf_train, y_train) 

 
#Perfoming Prediction X_test 

predictions1 = classifier1.predict(tfidf_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions1) 

print("accuracy of Multinomial classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier1  
cm = metrics.confusion_matrix(y_test, predictions1, 

labels=['Fake', 'Real'])  
plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for Multinomial classifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier1, tfidf_train, y_train, cv=10) 

precision = cross_val_score(classifier1,tfidf_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier1,tfidf_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier1,tfidf_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for Multinomial 

classifi-er:",(str(np.mean(scores)*100) + ' %'))  
print("Cross validation on Precision for Multinomial 

classifi-er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for Multinomial 

classifi-er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for Multinomial 

classifi-er:",(str(np.mean(f1_score)*100) + ' %')) 

 

 
###################Importing PassiveAggresive 

classifier :Classifier2##################  
classifier2 = PassiveAggressiveClassifier(max_iter=1000, 

ran-dom_state=10) 

 
#fit the classifier X_train  
classifier2.fit(tfidf_train, y_train) 

 
#Perfoming Prediction X_test 

predictions2 = classifier2.predict(tfidf_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions2)  
print("accuracy of PassiveAggresive Classifier: %0.3f" 

%accuracy) #Confusion matrix performance for classifier2 
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cm = metrics.confusion_matrix(y_test, predictions2, 

labels=['Fake', 'Real'])  
plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for PassiveAggresive classifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier2, tfidf_train, y_train, cv=10) 

precision = cross_val_score(classifier2,tfidf_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier2,tfidf_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier2,tfidf_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for PA classifi-  
er:",(str(np.mean(scores)*100) + ' %')) 

print("Cross validation on Precision for PA classifi-  
er:",(str(np.mean(precision)*100) + ' %')) 

print("Cross validation on Recall for PA classifi- 

er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for PA classifi- 

er:",(str(np.mean(f1_score)*100) + ' %')) 

 

 
###################Importing MLP: Classifier3################## 

classifier3 = MLPClassifier(alpha=0.1, random_state=10) 

#fit the classifier X_train  
classifier3.fit(tfidf_train, y_train) 

 
#Perfoming Prediction X_test  
predictions3 = classifier3.predict(tfidf_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions3) 

print("accuracy of MLP classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier3  
cm = metrics.confusion_matrix(y_test, predictions3, 

labels=['Fake', 'Real']) 

plot_confusion_matrix(cm, classes=['Fake', 'Real'])  
print("Confusion matrix for MLP classifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier3, tfidf_train, y_train, cv=10) 

precision = cross_val_score(classifier3,tfidf_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier3,tfidf_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier3,tfidf_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for MLP classifi-  
er:",(str(np.mean(scores)*100) + ' %')) 

print("Cross validation on Precision for MLP classifi- 

er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for MLP classifi- 

er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for MLP classifi- 

er:",(str(np.mean(f1_score)*100) + ' %')) 
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###################Importing Logistic Regression: 

Classifi-er4##################  
classifier4 = LogisticRegression(C=3.0, random_state=10) 

 
#fit the classifier X_train  
classifier4.fit(tfidf_train, y_train) 

 
#Perfoming Prediction X_test 

predictions4 = classifier4.predict(tfidf_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions4) 

print("accuracy of Logistic Regression classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier4  
cm = metrics.confusion_matrix(y_test, predictions4, 

labels=['Fake', 'Real'])  
plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for Logistic Regressionclassifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier4, tfidf_train, y_train, cv=10) 

precision = cross_val_score(classifier4,tfidf_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier4,tfidf_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier4,tfidf_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for Logistic Regression 

classifi-er:",(str(np.mean(scores)*100) + ' %'))  
print("Cross validation on Precision for Logistic Regression 

classifi-er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for Logistic Regression 

classifi-er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for Logistic Regression 

classifi-er:",(str(np.mean(f1_score)*100) + ' %')) 

 

 
###################Importing AdaBoost: Classifier5################## 

classifier5 = AdaBoostClassifier(n_estimators=100, random_state=10) 

 
#fit the classifier X_train 

classifier5.fit(tfidf_train, y_train) 

 
#Perfoming Prediction X_test 

predictions5 = classifier5.predict(tfidf_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions5) 

print("accuracy of AdaBoost classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier5  
cm = metrics.confusion_matrix(y_test, predictions5, 

labels=['Fake', 'Real'])  
plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for AdaBoost classifier:\n",cm) 

 
#Cross validation with 10 folds 

scores = cross_val_score(classifier5, tfidf_train, y_train, cv=10) 
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precision = cross_val_score(classifier5,tfidf_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier5,tfidf_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier5,tfidf_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for AdaBoost 

classifi-er:",(str(np.mean(scores)*100) + ' %'))  
print("Cross validation on Precision for AdaBoost 

classifi-er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for AdaBoost 

classifi-er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for AdaBoost 

classifi-er:",(str(np.mean(f1_score)*100) + ' %')) 

 

 
############################### BAG-OF-WORDS 

MODEL ########################  
print("------------------------------BAG-OF-WORDS MODEL 

CLASSIFICA-TION-------------------------") 

 
################Importing MultinomialNB 

classifier :Classifier1################## 

classifier1 = MultinomialNB(alpha=0.2) 

 
#fit data  
classifier1.fit(count_train, y_train) 

 
#Perfoming Prediction X_test  
predictions1 = classifier1.predict(count_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions1) 

print("accuracy of Multinomial Classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance with classifier1  
cm = metrics.confusion_matrix(y_test, predictions1, 

labels=['Fake', 'Real']) 

plot_confusion_matrix(cm, classes=['Fake', 'Real'])  
print("Confusion matrix for Multinomial classifier\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier1, count_train, y_train, cv=10) 

precision = cross_val_score(classifier1,count_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier1,count_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier1,count_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for Multinomial 

classifi-er:",(str(np.mean(scores)*100) + ' %'))  
print("Cross validation on Precision for Multinomial 

classifi-er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for Multinomial 

classifi-er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for Multinomial 

classifi-er:",(str(np.mean(f1_score)*100) + ' %')) 
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###################Importing PassiveAggresive 

classifier :Classifier2##################  
classifier2 = PassiveAggressiveClassifier(max_iter=100, 

ran-dom_state=10) 

 
#fit the data 

classifier2.fit(count_train, y_train) 

 
#Perfoming Prediction X_test 

predictions2 = classifier2.predict(count_test) 

 
#Evaluation of the Results  
accuracy = metrics.accuracy_score(y_test, predictions2) 

print("accuracy of PassiveAggresive Classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance with classifier2  
cm = metrics.confusion_matrix(y_test, predictions2, 

labels=['Fake', 'Real']) 

plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for PassiveAggresive classifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier2, count_train, y_train, cv=10) 

precision = cross_val_score(classifier2,count_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier2,count_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier2,count_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for PA classifi- 

er:",(str(np.mean(scores)*100) + ' %')) 

print("Cross validation on Precision for PA classifi- 

er:",(str(np.mean(precision)*100) + ' %')) 

print("Cross validation on Recall for PA classifi-  
er:",(str(np.mean(recall)*100) + ' %')) 

print("Cross validation on F1-score for PA classifi-  
er:",(str(np.mean(f1_score)*100) + ' %')) 

 
###################Importing MLP: Classifier3################## 

classifier3 = MLPClassifier(alpha=0.2, random_state=10) 

 
#fit the classifier X_train 

classifier3.fit(count_train, y_train) 

 
#Perfoming Prediction X_test 

predictions3 = classifier3.predict(count_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions3) 

print("accuracy of MLP Classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier3  
cm = metrics.confusion_matrix(y_test, predictions3, 

labels=['Fake', 'Real'])  
plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for MLP classifier:\n",cm) 

 
#Cross validation with 10 folds 

scores = cross_val_score(classifier3, count_train, y_train, cv=10) 
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precision = cross_val_score(classifier3,count_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier3,count_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier3,count_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for MLP classifi- 

er:",(str(np.mean(scores)*100) + ' %')) 

print("Cross validation on Precision for MLP classifi-  
er:",(str(np.mean(precision)*100) + ' %')) 

print("Cross validation on Recall for MLP classifi-  
er:",(str(np.mean(recall)*100) + ' %')) 

print("Cross validation on F1-score for MLP classifi-  
er:",(str(np.mean(f1_score)*100) + ' %')) 

 
###################Importing Logistic Regression: 

Classifi-er4################## 

classifier4 = LogisticRegression(C=0.1, random_state=10) 

 
#fit the classifier X_train 

classifier4.fit(count_train, y_train) 

 
#Perfoming Prediction X_test 

predictions4 = classifier4.predict(count_test) 

 
#Evaluation of the Results  
accuracy = metrics.accuracy_score(y_test, predictions4) 

print("accuracy of Logistic Regression Classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier4  
cm = metrics.confusion_matrix(y_test, predictions4, 

labels=['Fake', 'Real']) 

plot_confusion_matrix(cm, classes=['Fake', 'Real']) 

print("Confusion matrix for Logistic Regression classifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier4, count_train, y_train, cv=10) 

precision = cross_val_score(classifier4,count_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier4,count_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier4,count_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for Logistic Regression 

classifi-er:",(str(np.mean(scores)*100) + ' %'))  
print("Cross validation on Precision for Logistic Regression 

classifi-er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for Logistic Regression 

classifi-er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for Logistic Regression 

classifi-er:",(str(np.mean(f1_score)*100) + ' %')) 

 
###################Importing AdaBoost: Classifier5################## 

classifier5 = AdaBoostClassifier(n_estimators=200, random_state=10) 

 
#fit the classifier X_train 

classifier5.fit(count_train, y_train) 

 
#Perfoming Prediction X_test 
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predictions5 = classifier5.predict(count_test) 

 
#Evaluation of the Results 

accuracy = metrics.accuracy_score(y_test, predictions5) 

print("accuracy of AdaBoost Classifier: %0.3f" %accuracy) 

 
#Confusion matrix performance for classifier5  
cm = metrics.confusion_matrix(y_test, predictions5, 

labels=['Fake', 'Real']) 

plot_confusion_matrix(cm, classes=['Fake', 'Real'])  
print("Confusion matrix for AdaBoost classifier:\n",cm) 

 
#Cross validation with 10 folds  
scores = cross_val_score(classifier5, count_train, y_train, cv=10) 

precision = cross_val_score(classifier5,count_train, y_train, 

scor-ing='precision_weighted', cv=10)  
recall = cross_val_score(classifier5,count_train, y_train, 

scor-ing='recall_weighted', cv=10)  
f1_score = cross_val_score(classifier5,count_train, y_train, 

scor-ing='f1_weighted', cv=10) 

 
print("Cross validation on Accuracy for AdaBoost 

classifi-er:",(str(np.mean(scores)*100) + ' %'))  
print("Cross validation on Precision for AdaBoost 

classifi-er:",(str(np.mean(precision)*100) + ' %'))  
print("Cross validation on Recall for AdaBoost 

classifi-er:",(str(np.mean(recall)*100) + ' %'))  
print("Cross validation on F1-score for AdaBoost 

classifi-er:",(str(np.mean(f1_score)*100) + ' %')) 

 
################################################################# 

Weighted Ranking Model ############################################## 

 
def most_informative_feature_for_binary_classification(vectorizer, 

classifier, n=100): 

""" 

See: https://stackoverflow.com/a/26980472 

 
Identify most important features if given a vectorizer and 

binary classifier. Set n to the number  
of weighted features you would like to show. (Note: current 

imple-mentation merely prints and does not  
return top classes.) 

""" 

 
class_labels = classifier.classes_ 

feature_names = vectorizer.get_feature_names()  
topn_class1 = sorted(zip(classifier.coef_[0], feature_names))[:n] 

topn_class2 = sorted(zip(classifier.coef_[0], feature_names))[-n:] 

 
for coef, feat in topn_class1: 

print(class_labels[0], coef, feat) 

 
print() 

 
for coef, feat in reversed(topn_class2): 

print(class_labels[1], coef, feat) 

 

 
most_informative_feature_for_binary_classification(tfidf_vectorizer, 

classifier2, n=30) 
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feature_names = tfidf_vectorizer.get_feature_names() 

 
#number of the unique words in the dataset 

number_of_words = len(feature_names) 

 
#weighted score for each and every word 

Weight = sorted(zip(feature_names, 

classifi-er2.coef_[0]))[:number_of_words] 

 
#This is the index in order to decide if an unkown input is Fake 

or Real  
Ranking_Index = [] 

 
#Inserting a new input by the user 

Input_Text = input('Enter the text:') 

#Preprocessing stage for the unkown input 

Input_Text = re.sub(r'[^a-zA-Z]', ' ', str(Input_Text)) 

#Keep only lower letters 

Input_Text = Input_Text.lower()  
#Filter out stopwords  
Input_Text= ' '.join([word for word in Input_Text.split() if word 

not in (stopwords.words('english'))])  
print("Preprocessed text: ", Input_Text) 

 
for word, score in Weight: 

if word in Input_Text.split():  
Ranking_Index.append(score) 

 
#Ranking Index includes the score of each and every word that 

contains print(Ranking_Index)  
#Summing the elements of Ranking_Index in order to get the final 

Rank-ing Score 

Ranking_Index_Sum = sum(Ranking_Index) 

 
if Ranking_Index_Sum > 0: 

print("The Article is Real with a score:", Ranking_Index_Sum) 

elif Ranking_Index_Sum <0: 

print("The Article is Fake with a score:", Ranking_Index_Sum) 

elif Ranking_Index_Sum == 0:  
print("The Article has the same probability to be Fake or Real") 

else:  
print("There was an error. Please try again!") 
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